
Huayu Wu, and Zhifeng Bao

National University of Singapore



Outline
 Introduction

 Motivation

 Our Approach

 Experiments

 Conclusion



Introduction
 XML Keyword Search

 Originated from Information Retrieval (IR)

 Find relevant information based on a set of given keywords

 How to define relevant information in XML data?

 Tree-based approach: Lowest Common Ancestor (LCA) of 
query keywords.

 Graph-based approach: path containing query keywords.

 Since tree search is more efficient than graph search, the LCA-
based approach attracts most research attention.

 E.g., LCA, SLCA, MLCA, VLCA…… 



Introduction (Cont.)
 Example: Smallest Lowest Common Ancestor (SLCA)

 Query: {Physics, Smith}
 LCA answers: book(1.2.2.1), subject(1.2), …
 SLCA answers: book(1.2.2.1), … 
 Many other improved LCA-based semantics



Motivation
 The existing works do not consider the semantics of object 

and attribute during LCA-based searching.

 Such semantics is considered in some work to infer output 
information, after LCA-based searching, e.g., XSeek.

 Problems:

 Efficiency problem:

 Example 1: {book, title}. If every book has a title, there is no need to 
search for all book nodes and all title nodes to compute LCAs. 

 Example 2: {book, title, XML}. If there are 100 book titles, but only 
one of them has value of “XML”, it is redundant to search all 100 title 
nodes.



Motivation (Cont.)
 Problems (cont.):

 Search quality problem:

 Example 3: {physics}. Physics may refer to the subject of physics, or 
the book of physics. LCA-based computation mix up all 
interpretations, which is difficult for users to filter results based on 
his/her real search intention. 

 Example 2: {book, price<50}, {book, about “hard disk”}. The inverted 
list based LCA computation cannot efficiently support advanced 
search, e.g., range search, phrase search, etc. 

 Solution: Using semantics of object during LCA-based 
computation, to avoid these efficiency and search quality 
problems.



Our Approach
 Core idea: put semantics into LCA-based computation.

 Document labeling: Only label objects. Other nodes 
inherit the label of its lowest ancestor object. 

In existing work, all document 
nodes are labeled.

In our work, only object nodes 
are label. Number of labels is 
significantly reduced. 



Our Approach (Cont.)
 Indices:

 Inverted lists

 Only for non-value nodes, and also object-oriented.

 Object tables

 Values are stored in object tables, with the corresponding object labels

 Other indices to map attribute type to object class, and to map values to the 
belonged object and attribute instances.



Our Approach (Cont.)
 OO keyword query processing

 Step 1: Keyword partitioning

 Create one partition for each object involved. Associate each 
value keyword to the corresponding attribute keyword and 
finally to the corresponding object partition. Associate un 
attached attributes keyword to object partitions.

 Ambiguous keyword query leads different partitioning results.

 Example: 

 {subject, physics} => {(subject, name/physics)}

 {Brown, Cole} => {(book, author/Brown, author/Cole)} or 
{(book, author/Brown), (book, author/Cole)}



Our Approach (Cont.)
 OO keyword query processing

 Step 2: Inverted list filtering for each partition
 Case (a), if the partition contains only object keyword, take the 

inverted list for that object.

 Case (b), if the partition contains both object and attribute keywords, 
but no value, take the intersection of inverted lists for the attribute 
keywords.

 Case (c), if the partition contains object, attribute and value keywords, 
take the selection from the object table. 

 Example: {book, XML, subject, name} => {(book, title/XML), (subject, 
name)}.

 The inverted list for Partition 1 is the selected labels from book 
table, based on title = “XML”.

 The inverted list for Partition 2 is the inverted list for subject/name. 



Our Approach (Cont.)
 OO keyword query processing

 Step 3: SLOCA computation

 Similar to the SLCA computation, but make sure the resulting 
nodes are object nodes.

SLCA

SLOCA



Our Approach (Cont.)
 OO keyword query processing

 Step 4: Result return

 Identifying return information

 Based on the closeness among object keywords in the 
document schema

 Extracting values

 From object tables

 Supports advanced search, e.g., range search, phrase search, 
because of the power of SQL in table selection.



Experiments
 Experimental results:
 Efficiency: 
 Compared to three existing SLCA implementation and IR-

styled keyword search algorithms

 Better performance, because after keyword partitioning, the 
searching is on object level, and reduce a lot of computation.



Experiments (Cont.)
 Experimental results:

 Search quality:

 Compared with SLCA, XSearch, XReal, they are well-known 
XML keyword search algorithms.



Conclusion
 We propose to use the semantics of object in XML 

keyword search.

 Step 1: Associate values and attributes to objects, for 
XML keyword queries.

 Step 2: Filter the inverted list for each object partition.

 Step 3: Perform LCA-based computation in object level.

 Step 4: Return result with object tables.

 We show by experiments that the Object-oriented 
approach can improve both the query processing 
efficiency and the quality of keyword search. 



Thank you

Q & A


