R E———

Object-Oriented XIVIL
Keyword Search

Ingapore

Outline

Introduction
Motivation
Our Approach
Experiments

Conclusion

Introduction
XML Keyword Search

* Originated from Information Retrieval (IR)

 Find relevant information based on a set of given keywords

e How to define relevant information in XML data?

» Tree-based approach: Lowest Common Ancestor (LCA) of
query keywords.

 Graph-based approach: path containing query keywords.

» Since tree search is more efficient than graph search, the LCA-
based approach attracts most research attention.

E.g., LCA, SLCA, MLCA, VLCA......

Introduction (Cont.)

* Example: Smallest Lowest Common Ancestor (SLCA)

bookstore
1
subject
e
name books name books
(11.1) (1.1.2) (1.%.1] (12.2)
|) I ~
“compufer’ book o book “physics”™ book
(1.1.1.1) (1.12.1) (1.12.19) (1.2.1.1) (122.1)
title author about price quantity title author author price quantity title author price quantity
(1.121.1) (11212 (1.1213) (11214 (11215 (1.1.2191)(1.1.219.2) (1.1.2.193)(1.1.2.194) (1.1.2.19.5) (1221.1) (1.2.%.1.2] (1.22.13) (12214
: 32 “Brown” “Cole” 15 “Smith” 56
“Computers™ (1.1.2.121) ~... (1.1.2141) 20 L (1.12.1921) (1.1.2.193.1) 38 (1.1.2.1951) "-th,ssics*‘ 122121) |(1.22131) 10
(112111) hard disk ... (11215.1)(1.1.2.19.1.1) (1.12.19.4.1) (122111 (122141)

(1.12.13.1)

* Query: {Physics, Smith}
e LCA answers: book(1.2.2.1), subject(1.2), ...
e SLCA answers: book(1.2.2.1), ...
e Many other improved LCA-based semantics

Motivation

The existing works do not consider the semantics of object
and attribute during LCA-based searching.

e Such semantics is considered in some work to infer output
information, after LCA-based searching, e.g., XSeek.

Problems:
e Efficiency problem:

« Example 1: {book, title}. If every book has a title, there is no need to
search for all book nodes and all title nodes to compute LCAs.

« Example 2: {book, title, XML}. If there are 100 book titles, but only
one of them has value of “XML” it is redundant to search all 100 title
nodes.

Motivation (Cont.)

Problems (cont.):

e Search quality problem:

« Example 3: {physics}. Physics may refer to the subject of physics, or
the book of physics. LCA-based computation mix up all
interpretations, which is difficult for users to filter results based on
his/her real search intention.

« Example 2: {book, price<50}, {book, about “hard disk”}. The inverted
list based LCA computation cannot efficiently support advanced
search, e.g., range search, phrase search, etc.

Solution: Using semantics of object during LCA-based
computation, to avoid these efficiency and search quality
problems.

.
Our Approach

Core idea: put semantics into LCA-based computation.

Document labeling: Only label objects. Other nodes
inherit the label of its lowest ancestor object.

In existing work, all document bookstore In our work, only object nodes
1 .
nodes are I-halad 4 are label. Number of labels is
bookstor . epe
S significantly reduced.
mame subject subjfct : 5
(1.1.1) (1.1) (1.2) 2)
——’/———‘__— N --.._______“-‘
“computer” 11ai11e books najl_ue books o
1.1.1.1 — 7
() “computer™ book e book “physics™ book N —
tifle (1.1.1) (1.1.19) (1.2.1) * quantity
—_— e —_— —_— 3 9
(1131 title author about price quantity title author author price quantity title author price quantity (2219
I
“c “Computers” “Green™ T 32 20 “XML” “Brown™ “Cole™ 38 15 “Physics™ “Smith” 56 10
o u hard disk ...” 310
(11215, —— - (1.01.201.3.0) (L1215 0.1]) (LL2 1% 1) (L-£2.0.0.1) (1.2.2141)

(11213.1)

/
Our Approach (Cont.)

Indices:
e Inverted lists

« Only for non-value nodes, and also object-oriented.

[book [1121, ...11210 1221, | [book |
1111119121,]
[XML [J-»{ 1121011 | [book/auther |
[author [49»{ 1.121.2,...,1.12.102,1.1.2103,1.221.2, .. | [book/about [111, ... |
(a) Normal inverted list (b) OO inverted list

e Object tables

« Values are stored in object tables, with the corresponding object labels

Rbook}'author
Rbook

00-Dewey | Value
00-Dewey | Title About Price | Quantity

111 Green
111 Computers | . hard disk ... 32 20

11.1% Brown
1119 XML null 38 15

11.19 Cole
121 Physics null 56 10

121 Smith

e Other indices to map attribute type to object class, and to map values to the
belonged object and attribute instances.

/

Our Approach (Cont.)

OO keyword query processing
e Step 1: Keyword partitioning
 Create one partition for each object involved. Associate each
value keyword to the corresponding attribute keyword and

finally to the corresponding object partition. Associate un
attached attributes keyword to object partitions.

« Ambiguous keyword query leads different partitioning results.
« Example:
{subject, physics} => {(subject, name/physics)}

{Brown, Cole} => {(book, author/Brown, author/Cole)} or
{(book, author/Brown), (book, author/Cole)}

Our Approach (Cont.)

OO keyword query processing

o Step 2: Inverted list filtering for each partition

« Case (a), if the partition contains only object keyword, take the
inverted list for that object.

 Case (b), if the partition contains both object and attribute keywords,
but no value, take the intersection of inverted lists for the attribute
keywords.

 Case (c), if the partition contains object, attribute and value keywords,
take the selection from the object table.

« Example: {book, XML, subject, name} => {(book, title/XML), (subject,
name)}.

The inverted list for Partition 1 is the selected labels from book
table, based on title = “XML”".

The inverted list for Partition 2 is the inverted list for subject/name.

/
Our Approach (Cont.)

OO keyword query processing
e Step 3: SLOCA computation

» Similar to the SLCA computation, but make sure the resulting
nodes are object nodes.

bookstore
1
SLOCA =
subject subject
(1.1) (1.2)
..—.—'—'_.-—._._—.-.-
name name books
“computer™ book book “physics™ book
(1.1.1) (1.1.19) (1.2.1)
title author about price quantity title author author price quantity title author price quantity
|
"C.‘01111|Jute1‘5' “Green” 32 20 “XML™ §Brown™ “Cole” 15 “Physics™ “Smith” 56 10

hard disk ...”

Our Approach (Cont.)

OO keyword query processing
e Step 4: Result return

» Identifying return information

Based on the closeness among object keywords in the
document schema

 Extracting values
From object tables

Supports advanced search, e.g., range search, phrase search,
because of the power of SQL in table selection.

Experiments

* Experimental results:
e Efficiency:

» Compared to three existing SLCA implementation and IR-
styled keyword search algorithms

10000 10000

1000

-allkhANA

1 1
Dol DO2 DO3 DO4 DOS DOe DQ7 DO XQl X022 X¥O3 X044 XNOS XQE& XO7 XOB

1000

Tirme (ms)

Time (ms)

oo

Excution
Excution

1o

W IMS ILE M XReal WOOKS HIMS ILE W ¥Real WOOKS

(a) DBLP data (b) XMark data

» Better performance, because after keyword partitioning, the
searching is on object level, and reduce a lot of computation.

Experiments (Cont.)

* Experimental results:

e Search quality:

« Compared with SLCA, XSearch, XReal, they are well-known
XML keyword search algorithms.

100 u 100 T 100

80 5 —1 1 &0 20
£ @ £ g £ w0
5 5 5
n =z =
2 0 g g
a a (-9

20 20 I 20 I

0 i T T 0 -

pQql DQ2 DO3 DO4 DAS DQE DO7 Das ¥Q1 Q2 XQ3 X¥04 XO5 XO6 XO7 X08 col €Oz €Q3 cOs COS €Of C€O7 COS
HSLCA M XSearch M XReal HOOKS ESLCA WXSearch MXReal M OOKS HSLCA M XSearch MIXReal BOOKS

(a) DBLP data (b) XMark data (¢) Course data

/

Conclusion

We propose to use the semantics of object in XML
keyword search.

e Step 1: Associate values and attributes to objects, for
XML keyword queries.

e Step 2: Filter the inverted list for each object partition.
e Step 3: Perform LCA-based computation in object level.
 Step 4: Return result with object tables.

We show by experiments that the Object-oriented

approach can improve both the query processing
efficiency and the quality of keyword search.

W

Thank you
Q&A

