

Tool support for technology scouting using online sources

Elena Tsiporkova and Tom Tourwé

Technology scouting ...

... is understood as an organised approach for identifying technological needs, gaps and opportunities, and then finding solutions outside the official borders of the enterprise

Technology scouting ...

- ... is very often applied when:
 - a technical problem needs to be solved quickly due to some change in the competitive landscape;
 - an organisation is looking for opportunities to move into a new market with limited involvement of internal resources;
 - or specific new skills need to be acquired without increasing internal resource overhead.
- A technology scout needs to utilize an extensive and varied network of contacts and resources, and stay on top of emerging trends and technologies.

An example of application-specific expert finding

- A pharmaceutical company needs to make important decisions related to the planning of large-scale clinical trials world-wide
- Optimal planning is essential since
 - enormous investment is associated with clinical trials
 - the outcome can have crucial impact on the future and profitability of the whole enterprise,
- ... and requires
 - thorough knowledge of the different clinical researchers worldwide active in the disease targeted by the planned clinical trials:
 - current research results in the field
 - present affiliation & size of the lab
 - number of patients with the disease in question treated per year
 - •

Going beyond recommendation and personalisation imposes more strict requirements

- Very high (if not complete) coverage over the domain should be attained
- High accuracy/reliability of the data needs to be guaranteed
- The data needs to be up-to-date at all times

These requirements induce specific **research challenges**

- High level of coverage requires information extraction from multiple heterogeneous data sources, structured (LinkedIn, Twitter), semistructured (DBLP, ACM DL) and unstructured (web pages)
- High accuracy & reliability requires
 - to develop and apply advanced disambiguation techniques
 - to qualify the different sources in terms of reliability and trustworthiness:
 e.g. distinguish between doubtful and reputable sources
- Keeping the data up-to-date requires a flexible data model that can deal with partial data and allows continuous updates

A bottom-up approach to building an expertfinding repository

High coverage through incremental extension of targeted initial seeds

 Identify online sources to mine serving as seeds for incremental growth of the repository, targeted to the application domain in question

- Consider additional sources using the extracted information as a seed
 - Search for authors and co-authors
 - Identify additional published material

Actors in the field

Technology-related publications

Research activities

Career evolution

High accuracy & reliability through merging & disambiguation

- The collected data represents partial information about authors, their publications, affiliations, co-authors, ...
- This information is often inconsistent and conflicting
 - "T. Tourwé" vs. "Tom Tourwé" vs. "Tom Tourwe" vs. "Tourwé, T." vs. "E. Tourwe" vs. "Tourwé, D"
 - <u>tom.tourwe@sirris.be</u> vs. <u>tom.tourwe@vub.ac.be</u> vs. <u>"tom.tourwe@prog.vub.ac.be"</u> vs. <u>tom.tourwe@cwi.nl</u>
 - "Vrije Universiteit Brussel" vs. "V.U.B" vs. "Brussels Free University" vs. "Free University of Brussels"
 - •
- Merging & disambiguation are required to guarantee that an expert profile and associated publications refer to a unique author

Continuous merging & disambiguation require flexible data modeling

- The stream of information is infinite & continuous
 - → new information becomes avaiable and is gathered constantly
- Information should be considered partial at any moment in time
 - → different pieces of information are gathered from different sources and added at different moments in time
- No decision can be permanent
 - → decisions made based on partial information might need to be revoked

Graphs as a flexible data model

- Extracted information is represented as an "instance", a collection of nodes and edges that describe (partial) information about an author
- Constructing a complete author profile amounts to finding an optimal partitioning (clustering) of instances resulting in each instance-group (cluster) representing a unique author

Continuous incremental graph (re)clustering

- Similarity edges are added between name, e-mail address and affiliation nodes
- A domain-independent dynamic minimum-cut tree algorithm computes clusters based on these similarity edges
 - Builds only part of the minimum-cut tree as necessary
 - The number of authors impacted by new data entry is limited
 - The tree is computed over subset of nodes, which affects limited number of clusters
 - Guarantees efficiency while maintaining an identical cluster quality as the static version of the algorithm
- Domain-dependent rules propagate similarities when clustering occurs
 - Community, e-mail & affiliation rules

Community rule

 Exploiting the fact that authors often work together with the same co-author

E-mail rule

 Authors with the same e-mail address, are most likely the same person

Initial Framework Evaluation

- Manually constructed ground truth testset based on 5 base names and over 1000 publications, extracted from DBLP
 - Turck, Mens, Chen, Woo & Johnson
- Calculcate precision & recall and derived F-measure to compare manually constructed clusters with clusters computed by the algorithm & the different rules

Results

Conclusion

- Requirements & research challenges for technology scouting based on an expert-finding repository
- An initial prototype that
 - continuously gathers data based on initial seeds
 - uses a flexible data model
 - incrementally clusters authors based on a domain-independent algorithm and a set of domain-dependent rules
- An initial experiment that evaluates the proposed approach