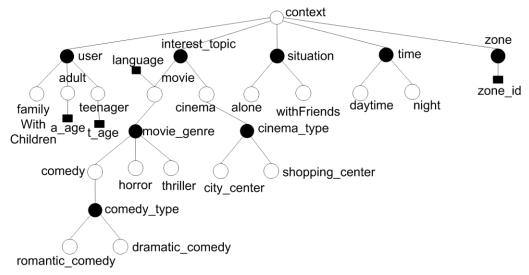


Context-Aware Data Management

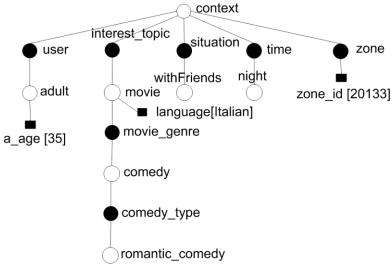
Emanuele Rabosio

Advisor: Elisa Quintarelli

Dipartimento di Elettronica e Informazione


Introduction

- The current technological scenario is characterized by an extremely large variety of information sources, providing the users with an enormous amount of data
- This constitutes an unprecedented opportunity, but at the same time risks to confuse and overwhelm them
- A possible solution to this problem is context-based data tailoring: the system allows a user to access only the view that is relevant for his/her context
- In the literature several context models have been proposed, that usually describe the context through a series of dimensions


Context model: Context Dimension Tree (CDT)

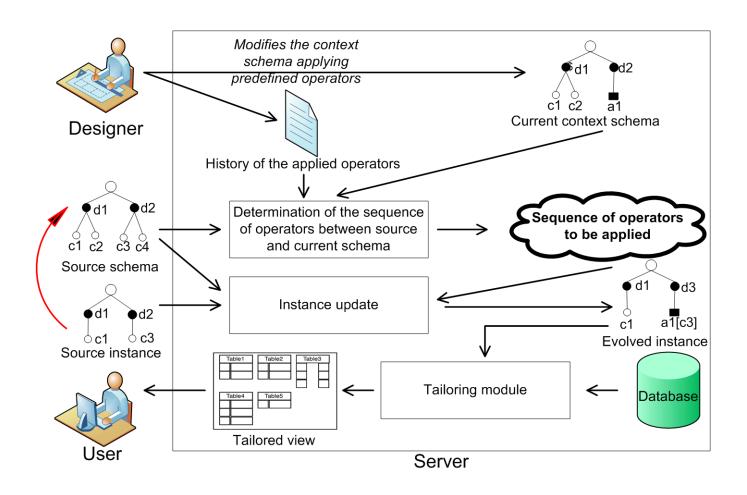
- Provides a tree-based representation of context schemas and instances
- A context instance is a subtree of the related schema

Context schema

A context instance

Research issues

- In this PhD research we start by considering the CDT model with the aim of studying some context-related issues that we feel particularly relevant within data management:
 - Context schema evolution
 - Automatic mining of context-aware preferences



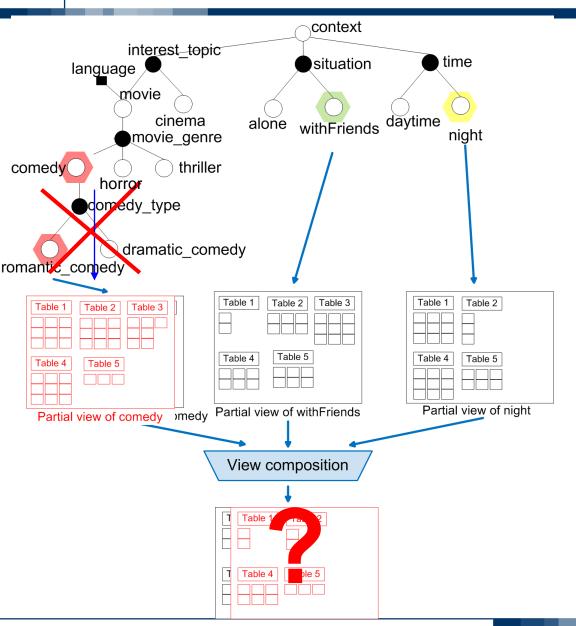
Context schema evolution

- The context dimensions and their values (together constituting the context schema) useful for data tailoring depend on the application requirements
- Application requirements are intrinsically dynamic and thus can change
- The change of requirements can be due to various reasons:
 - Changes in business policies
 - Market developments
 - Technology developments
- The changes in the application requirements lead to context schema evolution
 - facilitate the modification of the context schema making the contexts defined according to old schemas still utilizable

Framework for context schema evolution

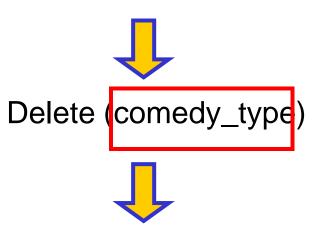
Evolution operators

- An update operation op is implemented by two operators:
 - A schema evolution operator SU_{op}
 - An instance evolution operator IU_{op}
- The schema operators, employed by the designer to modify the schema, are characterized by a set of preconditions imposing restrictions on the source schema on which they are applicable
- The instance operators adapt the instances to the new schema, trying to preserve as much information as possible
- Two categories of operators:
 - Atomic operators:
 - Minimal: each operator cannot be obtained as a combination of other ones
 - Complete: allow to evolve to any valid target context schema
 - High-level operators: compactly express common evolution needs



Evolution operators (2)

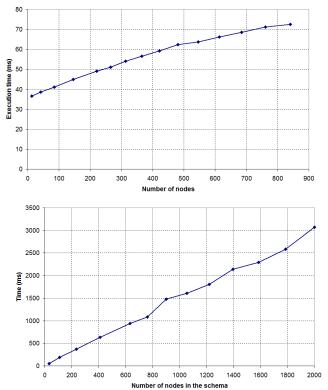
- We define atomic operators able to:
 - Delete subtrees
 - Insert subtrees
 - Replace sibling nodes with a new node
 - Replace subtrees with an attribute
 - Re-insert previously removed subtrees
- High-level operators allow to:
 - Move subtrees
 - Rename nodes or attributes
 - Insert attributes
 - Delete attributes

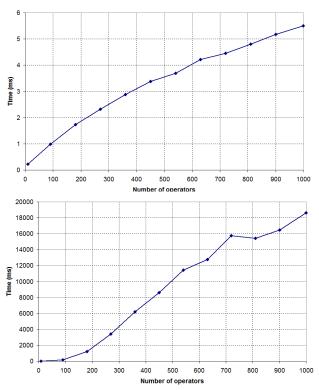


Node-based view definition

Requirement change:

no more useful to distinguish between romantic and dramatic comedies




The designer defines a view for *comedy*

System implementation

- We have implemented the described techniques in a Java prototype, able to:
 - Check the preconditions and apply operators on schemas
 - Apply sequences of operators on instances
 - Optimize sequences of operators
- We have measured execution times to assess the feasibility of the system
- Also for extremely long sequences and huge schemas the times are very low

Automatic mining of context-aware preferences

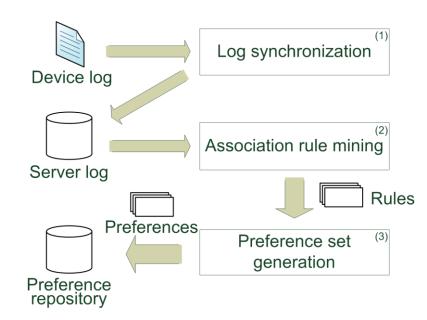
- Context allows only a coarse-grained data tailoring
- The view associated with a context may be further refined exploiting the user preferences in that context
- Preferences are context-aware: a user might be very interested in comedies when he/she is alone, and in thrillers when he/she is with his/her friends
- The number of possible contexts may be huge also for a small CDT, therefore the user may be discouraged w.r.t. specifying preferences for all such contexts

in this research we propose a methodology to automatically infer context-aware preferences

Preference model

- Numerical scores on data tuples and attributes of a relational database, expressed in the range [0;1]
- σ -preference $P_{\sigma}(R)$ on the relation R(X) is defined as <C, SQ, S>

$$C = \mathtt{interest_topic} = \mathtt{movie} \land \mathtt{situation} = \mathtt{alone}$$
 $SQ = \sigma_{\mathtt{genre}="comedy"} \mathtt{MOVIE}$ $S = 0.8$


• π -preference $P_{\pi}(R)$ on the relation R(X) is defined as <C, A, S>

$$C = \mathtt{interest_topic} = \mathtt{cinema} \wedge \mathtt{situation} = \mathtt{alone}$$
 $A = cinema.city$ $S = 0.9$

Preference mining – Overview

- Objective:
 - Generate preference profiles analyzing log data, extracting knowledge in terms of association rules
- Input:
 - User activity log
- Output:
 - σ and π -preferences
- The steps are performed independently for σ- and π-preferences
- Some minor tasks are omitted for brevity

σ-preference mining

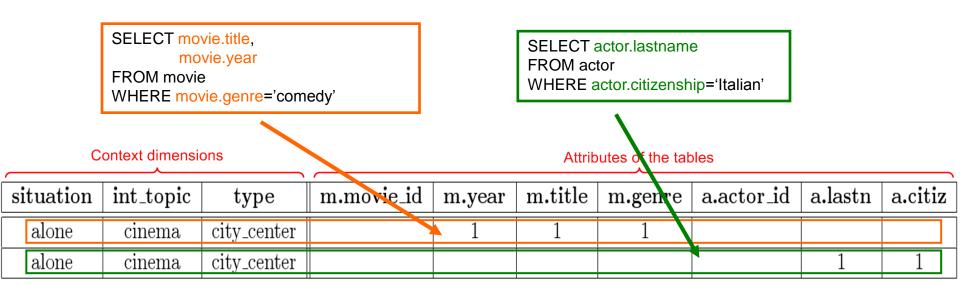
Context: situation=alone, cinema_type=city_center **Query**:

SELECT title FROM movie WHERE genre='comedy'

MOVIE							
${f movie_id}$	title	genre	year				
m1	Movie1	comedy	2002				
m2	Movie2	horror	2002				
m3	Movie3	comedy	2007				

Log of MOVIE:

Context dimensions


Movie attributes

id	situation	$interest_topic$	type	•••	$movie_id$	title	genre	year
1	alone	cinema	city_center		m1	Movie1	comedy	2002
2	alone	cinema	$\operatorname{city_center}$		m3	Movie3	comedy	2007

- This log is used to mine association rules connecting contexts with conditions on data
- < situation = alone \land interest topic = movie \rightarrow movie.genre = 'comedy', 0.7 >
- Preference scores are obtained combining the confidence of the rules and the frequencies of the related data in the dataset accessed by the user

π -preference mining

 This log is used to mine association rules, connecting contexts with attributes

< situation = alone \land interest - topic = movie \rightarrow movie.genre, 0.7 >

 In this case the confidence of the rule is an indicator of preference, without requiring frequency computations

Experimental evaluation

- We have employed a video-on-demand database, containing information about movies, actors and directors
- Two real log files storing the activities of several users, associated with their context:
 - A commercial log of a video-on-demand company, with context specified through the dimensions day and time
 - A log collected through a web application, with richer context information (day, time and situation)
- The logs have been used to mine preferences, and compute the recall
- Results:
 - Our methods outperform other tested methodologies in terms of recall
 - Our methods outperform the same technique if run without considering the context information; the advantages are stronger when the context information is richer

Possible extensions

- Our work might be extended along several dimensions, applying techniques coming from other areas in the context-related field:
 - Context sharing, applying data exchange techniques
 - Context-aware recommender systems
 - Efficient formalization of the CDT through techniques of formal verification