Levels for Conceptual Modeling

Claudio Masolo

Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy
masolo@loa-cnr.it

OntoCom @ ER – November 2011
1 Isa and inheritance

- **Abstraction (specification):** starting from a given domain, objects are grouped in classes (types) according to the properties (attributes) they have in common:
 - more *general* a class is, less properties its instances share;
 - more *specific* a class is, more properties its instances share.

- Inheritance has no problems if we consider this basic intuition.
2 Difficulties with isa and inheritance

- **Hiding/blocking.** Student \Rightarrow Person but Student has no weight. Employee \Rightarrow Person but Employee has no home phone number.

- **Overriding.** Statue \Rightarrow AmountOfMatter but the price of statues could be different from the price of mere amounts of matter. Employee \Rightarrow Person but the phone number of an employee could be different from his/her personal one.

- **Ambiguous inheritance and conflicting attributes.** WorkingStudent \Rightarrow Employee and WorkingStudent \Rightarrow Student but room of John when employee \neq room of John when student. Quacker \Rightarrow Person and Republican \Rightarrow Person but Nixon as quacker is pacifist while as republican is not.
3 Difficulties with isa and inheritance

- **Counting.** Suppose Customer \Rightarrow Person and Customer has the additional (w.r.t. Person) attribute CustomerCode.
 - The same person can be a customer of different persons, therefore we cannot count persons to count customers.
 - Can we count customers, i.e. entities identified by codes?
4 General questions

- Are the previous difficulties symptomatic of isa overloading/misusing?
- Is it possible to find an alternative mechanism to *structure* types that
 - is general as Isa is,
 - it is compatible with Isa,
 - allows for a controlled inheritance mechanism,
 - does not suffer of the previous difficulties?
5 Parthood (aggregation)

- Each human necessarily has exactly one brain, exactly one heart, and at most two hands (hands are not necessary for humans).
- Some proposals consider a further distinction: humans have necessarily *specific* brains but not *specific* hearts (heart transplantation).
- Some proposals manage attribute inheritance through parthood.
- Less addressed question: is it enough to have a brain and an heart (and maybe two hands, one trunk, etc.) to have an human?
6 Constitution

- Statues are *constituted* by amounts of matter.

 - Statue \Rightarrow AmountOfMatter, i.e. are statues amounts of matter?
 - Problem. Statues can *change* their material support across time.

 - AmoutOfMatter $\overset{1}{\rightarrow} \overset{1}{\Diamond}$ Statue, i.e. are amounts of matter necessary parts of statues?
 - Problem. *Extensionality* of parthood
 \[
 PP_{xy} \rightarrow \exists z (P_{zy} \land \neg O_{zx})
 \]
 what makes the difference btw amounts of matter and statues?
 [what makes the difference between four legs plus a top and a table?]
7 Individual roles

- Are these objects?
 1. ‘The president of Italy’
 2. ‘The director of the Berlin Philharmonic’
 ['The Berlin Philharmonic']
 3. ‘The Amazon customer #125678’

- General vs. specific dependence: presidents and directors can change their ‘substratum’ while customers relate to one single person.
8 Individual roles /2

- Customer ⇒ Person and President ⇒ Person?
 - Migration problems + presidents can be represented by different persons at different times.
 - Is Person an abstraction from Customer, Person, etc., i.e. its instances are customers, students, etc.?

- Person \(^1 \star \Diamond \) Customer and Person \(^1 \star \Diamond \) President?
 - What makes the difference between persons and customers?
 1. Properties, tropes, relators, etc. to be added to the domain.
 ~ do tables require some structural constraint btw legs and tops?
 2. New objects to represent the “many faceted nature” of some kinds of entities.
9 General idea

- Follow a multiplicative approach that puts change at the core of the analysis and generalizes parthood to account for:
 - hearts are *aggregations* of, but different from, pluralities of cells;
 - the Amazon customer #125678 is different from John;
 - today, the president of Italy is only *represented* by Napolitano;
 - statues are *constituted* by, but different from, amounts of matt., paperweights are *constituted* by, but different from, pebbles.

- No properties, roles, relators, or new objects are necessary.
- Persons are not parts customers or presidents.
10 Grounding

- Intuitively, x grounds y at t if, at t, to exist, y requires x but, vice versa (at t) x does not require y.

- Is asymmetric, transitive, down linear and it does not satisfy neither the strong nor the weak supplementation principles.

 [For a FOL characterization see the paper or KR2010]

- It does not necessarily require reduction.

- In between pure existential dependence and constitution.
11 Grounding /2

- To exist, customers require both companies and persons.
- Grounding aims at capturing only the specific existential dependence between customers and persons.

Intuitions:
- the customer is spatially co-located with John not with Alitalia;
- relations are “directed”:
 - there is a difference between “John is a customer of Amazon” and “Amazon is a supplier for John”;
 - there is a change in perspective from John seen as a customer of Alitalia to Alitalia seen as a supplier for John.
12 Specific vs. generic grounding between classes

- T_1 is specifically grounded on T_2 ($T_1 \triangleright T_2$), if every T_1-object is grounded on a single T_2-object during its whole life; e.g. Customer \triangleright Person.
 - Often motivated by emergent properties;
 - [note: Customer is now a rigid type]
- T_1 is generically grounded on T_2 ($T_1 \triangleright\triangleright T_2$), if every T_1-object is grounded on on some, but not necessarily the same, T_2-object; e.g. Statue $\triangleright\triangleright$ AmountOfMatter.
 - Often motivated by different persistence conditions.

- These definitions can be extended to take into account cardinality constraints.
13 Inheritance through grounding

- Often it is taken for granted that:
 1. the intension of a type reduces to the set of its properties;
 2. if the \textit{intension} of T_1 includes the \textit{intension} of T_2 then the \textit{extension} of T_1 is included in the \textit{extension} of T_2.

- But grounded types are \textit{disjoint} therefore, from (1)-(2), grounding, in general, does not allow for inheritance of (all) attributes.

By relaxing (2), seeing inheritance as a mechanism that helps in “factoring out shared specifications”, then
- inheritance not only through \textit{isa} but also through grounding;
- the inheritance through grounding can be completely controlled.
14 An example of levels
Grounding allows also for a new perspective on “abstraction” that I did not explore in this work.

- Are parts abstracted from (and therefore dependent on) wholes, i.e. *whole to parts* vs. *parts to whole*?

 E.g., *brains depend on humans* vs. *humans depend on brains*, brains are *carved out* from humans by an abstraction process.

- More generally, what about *perspectives on a given object*?