
Ontology Evolution in Data Integration:

Query Rewriting to the Rescue

HaridimosKondylakis, DimitrisPlexousakis

Computer Science Department, University of Crete

Information Systems Laboratory, FORTH-ICS

Problem Statement

2 of 37

Data Integration System

DB DB DB

Query

Sub-queries

Mappings

2 /17

Past Approaches

3 of 37

·Mapping Adaptation

·Mapping Composition

S O

O1

O2

move
elem

add
elem

delete
constraint

M1

M2

M3

M
S O

Oô

Mô = M ° E

E

Can use schema
mapping tools to
construct E.

3 /17

òEverything should be as simple as it is

but not simpleró-Albert Einstein

4 of 37

Data Integration System

DB DB DB

Mappings Mappings

DB DB DB

Ontology as global schemaRDF/S Ontology

SpaRQL SpaRQL

VDI System Independent

VMore Intuitive

VCan be easily updated

VModular

VMappings created only

once
VMappings do not

change

,

4 /17

·High-level change operations because:

·Most Important : They contain a smaller number of individual low-level

deletions/additions(explained later)

·The produced change log has smaller size

·Explanations on failures, are more intuitiveand concise.

·Requirement: EO1,O2 should be complete, non-ambiguousand

unique

·Composition andinversion are desirable but not obligatory properties

òEverything that exists it is only changeó

-Heraclitus 535 BCE

5 of 37

A change operation uover O, is any tuple (ɿa, ɿd) where

ɿa O= ø ɿd O

A change operation ufrom O1 to O2 is a change operation over O1 such that:

ɿa O2\ O1 ɿd O1\ O2

Definition (High-level Change Operation)

,

5 / 17

Example Evolution

6 of 37

·u1= Delete_Property(gender, ø, ø, ø, ø, Person, xsd:String, ø, ø)

·u2 = Merge_Properties({street,city}, address)

·u3= Rename_Property(name,fullname)

Person

Literal

Actor

Literal

Cont.

Point

Literal

Literal

name

ssn

gender

street
city

address

Literal

has_cont_point

fullname

Literal

6 /17

·EO1, O2

· u1 : Delete_Property(gender, ø, ø, ø, ø, Person, xsd:String, ø, ø)

· u2 :Merge_Properties({street,city}, address)

· u3:Rename_Property(name,fullname)

·GAV mappings

· x,y, fullname(x, y)Ą name(x,y)

· x,y, address(x, y) Ą y1, y2, street(x, y1) city(x, y2) concat(y, {y1,y2})

· ????

Example Evolution Continued

·EO2, O1

· inv(u3):Rename_Property(fullname, name)

· inv(u2):Split_Property(address, {street, city})

· inv(u1):Add_Property(gender,ø,ø, ø, ø,Person, xsd:String, ø, ø)

7 /17

Evolving Data Integration System (EDI)

An evolving data integration system EDIis a tuple of the form

(O1, S1, M1), é, (Om, Sm, Mm) where

ÅOi is a version of the ontology (1Ò iÒm).

ÅSi is a set of the local sources (1Ò iÒm).

ÅMi is the mapping between Si and Oi (1Ò iÒm).

Definition (Evolving Data Integration System)

S11 S12 S13

O1

M1

Sm1

Om

Mm

Si1

Oi

M i
é é

Om

Sm1
8 /17

Query Processing

·Queries to EDI are posed in terms of the Om

·In this work we do not consider OPTand FILTERoperations.

·The remaining fragment corresponds to union of conjunctive queries(Perez &

Arenas, 2009).

select ?SSN ?NAME ?ADDRESS

where {

?X type Person;

ssn?SSN;

fullname?NAME;

has_contact_point?Y.

?Y type Cont.Point;

address ?ADDRESS.

}

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS)

) 9 / 17

Query Expansion
·QuOntoReasoner

(Poggi, 2008) is used for
query expansion.
·Automatically identifies constraints

in RDF/S ontologies.

·Time complexity:
·O(m*(s+1)2)s

·m=#of ontology elements

·s=#of query subgoals

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

UNION

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

q

Expander

exp(q)

Person

Actor

10 /17

Valid Rewriting
·Since GAV mappings are

used, rewriting is performed

using unfolding

·Time Complexity:

·O(q*n*s)

·q= #expanded queries

·n= #change operations

·s= # subgoalsin q

· x, y, fullname(x, y)
Ą

name(x, y)

· x, y,address(x, y) Ą a,b, street(x, a)

 city(x, b) concat(y, {a,b})

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

UNION

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, fullname, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

ʌ?SSN,?NAME,?ADDRESS (

(?X,type,Person) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X,has_cont.point, ?Y) AND

(?Y,type, Cont.Point) AND

(?Y,address, ?ADDRESS))

UNION

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME) AND

(?X, has_contact_point, ?Y) AND

(?Y, type, Cont.Point) AND

(?Y, address, ?ADDRESS))

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME)AND

(?X, has_contact_point, ?Y)AND

(?Y, type, Cont.Point) AND

(?Y, street,?STREET) AND

(?Y, city, ?CITY) AND

concat(?ADDRESS, {?CITY, ?STREET})

ʌ?SSN,?NAME,?ADDRESS (

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME)AND

(?X, has_contact_point, ?Y)AND

(?Y, type, Cont.Point) AND

(?Y, street,?STREET) AND

(?Y, city, ?CITY) AND

concat(?ADDRESS, {?CITY, ?STREET})

ʌ?SSN,?NAME, ?STREET, ?CITY (

(?X, type, Person) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME)AND

(?X, has_contact_point, ?Y)AND

(?Y, type, Cont.Point) AND

(?Y, street,?STREET) AND

(?Y, city, ?CITY))

ʌ?SSN,?NAME,?STREET, ?CITY(

(?X, type, Actor) AND

(?X, ssn, ?SSN) AND

(?X, name, ?NAME)AND

(?X, has_contact_point, ?Y)AND

(?Y, type, Cont.Point) AND

(?Y, street,?STREET) AND

(?Y, city, ?CITY))
11 /17

12 /17

Problems & Solutions

·ʌ ?NAME,?GENDER (

(?X, type, Actor) AND

(?X, name, ?NAME) AND

(?X, gender, ?GENDER))

u1:

Delete_Property(gender, ø, ø, ø, ø, Person

, xsd:String, ø, ø)

u2 :Merge_Properties(

{ street,city}, address)

u3:Rename_Property(name,fullname)

·ʌ ?NAME,?GENDER (

(?X, type, Actor) AND

(?X, fullname, ?NAME) AND

(?X, gender, ?GENDER))

A change operation uaffects the conjunctive query qexpressed using terms from

O1, (u÷q) iff

Åɿa(u)=ø

Å triple pattern t qthat can be unified with a triple of ɿd(u).

Definition (Affecting change operation)

13 / 17

Minimally-Containing Rewritings

A query q is a minimally-containing rewriting of a conjunctive query qusing a set of

mappings (views) Mif and only if (1) q is a containing rewriting of q(q q) and (1)

there exists no containing rewriting q of qusing M, such that the expansion of q

contains the expansion of q .

Definition (Minimally -Containing Rewriting)

Answers to q

qcontaining

The minimally-containing rewriting of a conjunctive query qover EO1, O2can be

computed in O(n*s) (n=#change operations, s=#query subgoals).

Proposition

Minimally-Generalized Rewritings

·ʌ ?NAME,?GENDER (

(?X, type, Actor) AND

(?X, name, ?NAME) AND

(?X, gender, ?GENDER))

EO1, O2

u1 :

Delete_Property(gender, ø, ø, ø, ø, Person

, xsd:String, ø, ø)

u2 : Merge_Properties(

{ street,city}, address)

u3 : Rename_Property(name,fullname)

Person

Literal

Actor

Literal

Cont.

Point

Literal

Literal

name

ssn

gender

street

cityhas_cont_point

Literal
Literal

personal_info

·ʌ ?NAME,?GENDER (

(?X, type, Actor) AND

(?X, fullname, ?NAME) AND

(?X, gender, ?GENDER))

·ʌ ?NAME,?GENDER (

(?X, type, Actor) AND

(?X, fullname, ?NAME) AND

(?X, personal_info, ?GENDER))

14 / 17

Minimally-Generalized Rewritings

Let qexpressed using O1, qGEN is a generalized query of qover EO1, O2iff:

Åq qGEN

Ådoes not exist uin EO1, O2such that u÷qGEN.

Definition (Generalized Query)

A generalized query qGENof qover EO1, O2is called minimal if there is not qGEN such that

q qGEN andqGEN qGEN

Definition (Minimally -Generalized Query)

A minimally-generalized query of qover EO1, O2 can be computed in O(a*n*s)
(a= #affecting change operations, n= #change operations, s=#query subgoals).

Proposition

15 / 17

Conclusions

16 of 37

·Ontology evolution is realityand data integration systems should be aware of this

·We show how to answer queries over evolving ontologies without mapping

redefinition

1. We use high-level changes to model ontology evolution

2. We interpretthem as sound GAV mappings

3. We expandqueries to consider constraints from ontology

4. We valid rewrite (via unfolding) queries to consider GAV mappings

5. When equivalentrewritings cannot be produced

1. We provide best òover-approximationsó

· Minimally-Containingrewritings

· Minimally-Generalizedrewritings

2. Guiding query redefinition

· To the best of our knowledge no other system today is capable of query answering

over multiple ontology versionss 16 /17

Questions?

