
 2011 Michael R. Blaha Patterns of Data Modeling 1

Patterns of Data Modeling

Michael R. Blaha
Modelsoft consulting Corp

E-mail: blaha@computer.org
www.modelsoftcorp.com

ER 2011
October 2011

 2011 Michael R. Blaha Patterns of Data Modeling 2

Section 1: Introduction

Pattern Definitions From the Literature

• [Alexander-1979]. A solution to a problem in context.

• [Buschmann-1996]. Describes a particular recurring design problem
that arises in specific design contexts, and presents a well-proven
generic scheme for its solution.

• [Erl-2009] A proven solution to a common problem individually
documented in a consistent format and usually as part of a larger
collection.

• [Fowler-1997]. An idea that has been useful in one practical context
and will probably be useful in others.

• [Gamma-1995] Explains a general design that addresses a recurring
design problem. Describes the problem, the solution, when to apply the
solution, and its consequences.

• [Blaha-2010] A model fragment that is profound and recurring.

 2011 Michael R. Blaha Patterns of Data Modeling 3

Why are Patterns Important?

• Enriched modeling language. Patterns provide a higher level of
building blocks than modeling primitives. Patterns are prototypical
modeling fragments that distill the knowledge of experts.

• Improved documentation. Patterns offer standard forms that improve
modeling uniformity.

• Reduced modeling difficulty. Many developers find modeling difficult
because of the intrinsic abstraction. Patterns are all about abstraction
and give developers a better place to start.

• Faster modeling. Developers do not have to create everything from
scratch and can build on the accomplishments of others.

• Better models. Patterns reduce mistakes and rework. Carefully
considered patterns are more likely to be correct and robust than an
untested, custom solution.

 2011 Michael R. Blaha Patterns of Data Modeling 4

Drawbacks of Patterns

• Sporadic coverage. You cannot build a model by just combining
patterns. Typically you will use only a few patterns, but they often
embody key insights.

• Pattern discovery. It can be difficult to find a pattern, especially if your
idea is ill-formed.

• Complexity. Patterns are an advanced topic and can be difficult to
understand.

• Inconsistencies. There has been a real effort in the literature to cross
reference other work and build on it. However, inconsistencies still
happen.

• Immature technology. The patterns literature is active but the field is
still evolving.

 2011 Michael R. Blaha Patterns of Data Modeling 5

Pattern vs. Seed Model

Most of the database literature confuses patterns with seed models.

• Seed model: a model that is specific to a problem domain.

– Provides a starting point for applications from its problem domain.

Pattern Seed model

Applicability Application independent Application dependent

Scope An excerpt of a model Intended to be the starting
point for an application

Model size Typically <10 classes Typically 10-50 classes

Abstraction More abstract Less abstract

Model type Can be described with a data
model

Can be described with a data
model

 2011 Michael R. Blaha Patterns of Data Modeling 6

Section 2: Aspects of Pattern Technology

• Mathematical template: an abstract model fragment that is devoid of
application content.

– Driven by deep data structures that often arise in database models.

– Notation: Angle brackets denote parameters that are placeholders.

• Antipattern: a characterization of a common software flaw.

– Shows what not to do and how to fix it

• Archetype: a deep concept that is prominent and cuts across problem
domains.

• Identity: the means for denoting individual objects, so that they can be
found.

• Canonical model: a submodel that provides a useful service for many
applications

The remaining lecture will focus on the first two topics.

 2011 Michael R. Blaha Patterns of Data Modeling 7

Section 3: Mathematical Template — Tree

• Tree: a term from graph theory.

– A tree is a set of nodes that connect from child to parent. Each node
has one parent node except for the node at the tree’s top.

– A node can have many (zero or more) child nodes.

– There are no cycles — at most one path connects any two nodes.

• An example of a tree...

A

B C D

E F

 2011 Michael R. Blaha Patterns of Data Modeling 8

Six Tree Templates

• Hardcoded tree. Hardcodes types, one for each level of the tree.

• Simple tree. Restricts nodes to a single tree. Treats nodes the same.

• Structured tree. Restricts nodes to a single tree. Differentiates leaf
nodes from branch nodes.

• Overlapping trees. Permits a node to belong to multiple trees. Treats
nodes the same.

• Tree changing over time. Stores multiple variants of a tree. A
particular tree can be extracted by specifying a time. Restricts nodes to
a single tree. Treats nodes the same.

• Degenerate node and edge. Groups a parent with its children. The
grouping itself can be described with attributes and relationships.
Restricts nodes to a single tree. Treats nodes the same.

 2011 Michael R. Blaha Patterns of Data Modeling 9

Hardcoded Tree

• Use when:

– The structure of a tree is well known and it is important to enforce the
sequence of types in the levels of the hierarchy.

– In practice, used for examples, but seldom for code.

Hardcoded tree template Example: Organizational chart

<Level 1 class>

<Tree>

root

0..1
1

<Level 2 class>

1

*

<Level 3 class>

1

*

. . .

Corporation

Division

1

*

Department

1

*

 2011 Michael R. Blaha Patterns of Data Modeling 10

Simple Tree

• Use when:

– Tree decomposition is merely a matter of data structure.

• Node names can be globally unique or unique within the context of a
parent.

<Tree>
root

<Node>

parent child

Simple tree template

{All nodes have a parent except the root node.}
{There cannot be any cycles.}

Person

manager subordinate

{Every person has a manager, except the CEO.}

Example: Management hierarchy

0..1 1
0..1 * 0..1 *

{The management hierarchy must be acyclic.}

 2011 Michael R. Blaha Patterns of Data Modeling 11

Structured Tree

• Use when:

– Branch nodes and leaf nodes have different attributes, relationships,
and/or behavior.

• Node names can be globally unique or unique within the context of a
parent.

<Branch>

<Node>

<Leaf>

<Tree>
child

parent

Structured tree template
root

{All nodes have a parent except the root node.}
{There cannot be any cycles.}

Group

DrawingObject

GeometricObject

{The group hierarchy must be acyclic.}

Example: Graphical editor

0..1 1

0..1

*

0..1

2..*

Text

 2011 Michael R. Blaha Patterns of Data Modeling 12

Overlapping Trees

• Use when:

– A node can belong to multiple trees.

– Example: A part can have several bill-of-materials, such as one for
manufacturing, another for engineering, and another for service.

• Motivated by [Fowler, page 21] but a more powerful template capturing
the constraint that a child has at most one parent for a tree.

<Tree>
root

<Node>

Overlapping trees template

{All nodes have a parent except the root node.}
{There cannot be any cycles.}

{Each BOM must be acyclic.}

Example: Mechanical parts

{A parent must only have children for trees to

1

* *
child parent0..1

*

* BOM
root

PartRole1

* *
child parent0..1

*

*

which the parent belongs.}

Part
1*

 2011 Michael R. Blaha Patterns of Data Modeling 13

Tree Changing Over Time

• Note that the data structure does not enforce that a Node has at most
one parent at any time. Application code would need to enforce this
constraint.

Tree changing over time template

root

{All nodes have a parent except the root node. There cannot be any cycles.}

0..1 1

<Node>

effectiveDate
expirationDate

<Binding>

effectiveDate
expirationDate

* *1 1<Tree>
<Object>

effectiveDate
expirationDate

{A child has at most one parent at a time.}

<NodeLink>

effectiveDate
expirationDate

**
11parent child

 2011 Michael R. Blaha Patterns of Data Modeling 14

Tree Changing Over Time (continued)

• Use when:

– The history of a tree must be recorded.

Example: management hierarchy

effectiveDate
expirationDate

MgmtHierarchy

PositionLink

effectiveDate
expirationDate

Position

title effectiveDate
expirationDate

Assignment

effectiveDate

*1 1*0..1

Organization

Person

**
11parent child

expirationDate

1

*
1

root

 2011 Michael R. Blaha Patterns of Data Modeling 15

Degenerate Node and Edge

• Use when:

– The grouping of a parent and its children must be described.

Degenerate node and edge template

Example: Single inheritance

child

parent

*
0..110..1 1
0..1<Tree> <Node>

root
<Object>

{There cannot be any cycles.}

Attribute

name

Generalization

isExhaustive
subtype

supertype

*
10..10..1

discriminator
Class

name
0..1
0..1

{There cannot be any cycles.}

 2011 Michael R. Blaha Patterns of Data Modeling 16

Section 4: Mathematical Template — Additional Templates

Additional Templates

There are templates for additional data structures...

• Directed graph.

• Undirected graph.

• Item description.

• Star schema.

I welcome suggestions for other important data structures that can
be characterized with templates.

 2011 Michael R. Blaha Patterns of Data Modeling 17

Section 5: Mathematical Template — Example

Here are alternative patterns for expressing the data structure of a
corporate management hierarchy.

Management Template — Simple Tree

Management Template — Structured Tree

Person

manager subordinate
{Every person has a manager, except the CEO.}

0..1 * {The management hierarchy must be acyclic.}

IndividualContributorManager

Person

name
title

0..1

*

Department

name 1*

{Every person has a manager, except the CEO.}
{The management hierarchy must be acyclic.}

 2011 Michael R. Blaha Patterns of Data Modeling 18

Mgmt Template — Tree Changing Over Time

The model provides matrix management. This is because the model does
not enforce a tree—that a child can only have a single parent at a time.

Application code would need to provide such a constraint if it was desired.

effectiveDate
expirationDate

MgmtHierarchy

PositionLink

effectiveDate
expirationDate

Position

title effectiveDate
expirationDate

Assignment

effectiveDate

*1 1*0..1

Organization

Person

**
11parent child

expirationDate

1

*
1

root

 2011 Michael R. Blaha Patterns of Data Modeling 19

Management Template — Simple Directed Graph

Mgmt Template — Structured Directed Graph

Person

manager subordinate

{Every person has a manager, except the CEO.}

*

{The management graph must be acyclic.}

*

IndividualContributorManager

Person

name
title*

Department

name 1*

{Every person has a manager, except the CEO.}
{The management graph must be acyclic.}

*

 2011 Michael R. Blaha Patterns of Data Modeling 20

Mgmt Template — Simple DG Changing Over Time

effectiveDate
expirationDate

MgmtHierarchy

PositionLink

effectiveDate
expirationDate

Position

title effectiveDate
expirationDate

Assignment

effectiveDate

*1 1*0..1

Organization

Person

**
11parent child

expirationDate

1

*
1

root

 2011 Michael R. Blaha Patterns of Data Modeling 21

Section 6: Antipatterns

• Antipattern: a characterization of a software flaw. When you find an
antipattern, substitute the correction.

– Universal antipattern — avoid for all applications.

– Non-data-warehouse antipattern — acceptable for data
warehouses, but avoid them otherwise.

• Patterns are good ideas that can be reused.
In contrast, antipatterns look at what can go wrong.

• The literature focuses on antipatterns for programming code, but
antipatterns also apply to data models.

• [Brown-98]. An antipattern is some repeated practice that initially
appears to be beneficial, but ultimately produces more bad
consequences than beneficial results.

 2011 Michael R. Blaha Patterns of Data Modeling 22

Universal Antipattern: Symmetric Relationship

• Observation: There is a self relationship with the same multiplicity and
role names on each end.

– Symmetric relationships are always troublesome for relational
databases.

♦ Which column is first? Which column is second?

♦ Double entry or double searching of data.

• Improved model: Promote the relationship to a class in its own right.
The improved model is often more expressive.

Contract

Antipattern example

RelatedContract

* *
Contract

Improved model

*

ContractRelationship

0..1

 2011 Michael R. Blaha Patterns of Data Modeling 23

Universal Antipattern: Artificial Hardcoded Levels

• Observation: There is a fixed hierarchy with little difference between
the levels.

– Contrast with the hardcoded tree template where there is a material
difference between the levels.

• Improved model: Abstract and consolidate the levels. Use one of the
tree patterns to relate the levels.

Antipattern example Improved model

Supervisor

Manager
1

*

IndividualContributor

1

*

*
0..1
boss

subordinate

Employee

employeeType
/ reportingLevel

 2011 Michael R. Blaha Patterns of Data Modeling 24

Non-DW Antipattern: Parallel Attributes

• Observation: A class has groups of similar attributes. Such a model
can be brittle, verbose, and awkward to extend.

• Exceptions: OK for data warehouses.

• Improved model: Abstract and factor out commonality.

– The improved model can handle new products and financial metrics.

*

Organization

name

FinancialData

Metric

name

Product

name

*

*

1

1

Antipattern example Improved model

lawnmowerSales
lawnmowerProfit
tractorSales
tractorProfit
snowblowerSales
snowblowerProfit

name

Organization

quantity
1

 2011 Michael R. Blaha Patterns of Data Modeling 25

Non-DW Antipattern: Combined Classes

• Observation: A class has disparate attributes and lacks cohesion.

– The contact position and contact phone depend on the contact name
which in turn depends on the customer.

– Several customer records could have the same contact name with
inconsistent positions and phones.

• Exceptions: OK for data warehouses.

• Improved model: Make each concept its own class.

Antipattern example Improved model

Person

name
position
phone

Customer

customerName
customerType
customerStatus

0..1
contact

*
accountNumber

Customer

customerName
customerType
customerStatus

accountNumber

contactName
contactPosition
contactPhone

 2011 Michael R. Blaha Patterns of Data Modeling 26

Section 7: Antipattern Example

Reverse Engineering the LDAP Standard

• LDAP = Lightweight Directory Access Protocol

– LDAP is a public standard that has two primary purposes:
user authentication and sharing basic data across applications.

– LDAP was originally implemented with files, but we will study a
product with a database implementation.

– The LDAP schema is by intent a meta-schema that stores both a
model and the model’s data.

• My motive was to reverse engineer the database so that my client could
better understand the product.

• Available inputs.

– Schema: tables, attributes, data types, nullability, and primary keys.

– Data.

– A book explaining LDAP concepts.

 2011 Michael R. Blaha Patterns of Data Modeling 27

LDAP Reverse Engineering: Original Schema

I was given a printout of a SQL server schema.

There were a total of 11 tables. DsTimestamp is one of the tables.

DsTimestamp

Column Name Datatype Length Precision Scale

i_Replication_Key

dt_SchemaTimestamp

dt_DitTimestamp

dt_ReplicationTimestamp

dt_GroupTimestamp

int

datetime

datetime

datetime

datetime

4

8

8

8

8

10

0

0

0

0

0

0

0

0

0

Allow Nulls Identity

 2011 Michael R. Blaha Patterns of Data Modeling 28

LDAP Reverse Engineering: Original Schema

First, I typed the schema into a modeling tool (three slides).

Attributes have a name, nullability, datatype, and primary key flag.

Configuration

replicationKey[1..1]:int(4) {pk}
id[1..1]:int(4)
containerPartitionID:int(4)
containerDbID:int(4)
peKey:varchar(255)

AttributeContainers

replicationKey[1..1]:int(4) {pk}
aid[1..1]:int(4)
containerClsID[1..1]:int(4)
required[1..1]:bit

ObjectAttributes

dsID[1..1]:int(4) {pk}
sequence[1..1]:int(4) {pk}
aid[1..1]:int(4) {pk}
vcVal:varchar(255)
iVal:int(4)
vbVal:varbinary(255)
imgVal:image
dtVal:datetime
expiresTime:datetime

DsTimestamp

replicationKey[1..1]:int(4) {pk}
schemaTimestamp:datetime
ditTimestamp:datetime
replicationTimestamp:datetime
groupTimestamp:datetime

ObjectLookup

dsID[1..1]:int(4) {pk}
entryName[1..1]:varchar(255)
objectClass[1..1]:int(4)
containerDsID:int(4)
dseType[1..1]:int(4)
creatorsName:varchar(255)
createTimestamp:datetime
modifiersName:varchar(255)
modifyTimestamp:datetime
acl:image
expiresTime:datetime

 2011 Michael R. Blaha Patterns of Data Modeling 29

LDAP Rev Engr: Original Schema (continued)

ClassContainers

replicationKey[1..1]:int(4) {pk}
clsID[1..1]:int(4)
containerClsID[1..1]:int(4)

DsConfiguration

serverID[1..1]:int(4) {pk}
instanceID[1..1]:int(4)
serverName[1..1]:varchar(255)
dynamicDbFlags[1..1]:int(4)
replicationFlags[1..1]:int(4)
replicationProto[1..1]:varchar(255)
replicationEndP[1..1]:varchar(255)
replicationQSize[1..1]:int(4)
replicationLagTime[1..1]:int(4)
replicationBuffSize[1..1]:int(4)
replicationSyncTime[1..1]:int(4)
replicationInfo[1..1]:varchar(255)

Classes

clsID[1..1]:int(4) {pk}
name[1..1]:varchar(255)
oid:varchar(255)
description:varchar(255)
rdnAid[1..1]:int(4)
guid[..1]:char(39)
dseDitType[1..1]:int(4)
displayName:varchar(255)
isSecurityPrincipal[1..1]:bit
containerType[1..1]:int(4)
defaultSecurityDecriptor:image
acl:image

Subrefs

namespacePartitionID[1..1]:int(4) {pk}
subrefEntry:varchar(255)
subrefPrentID:int(4)
valuePartitionCount[1..1]:int(4)

 2011 Michael R. Blaha Patterns of Data Modeling 30

LDAP Rev Engr: Original Schema (continued)

Attributes

aid[1..1]:int(4) {pk}

DsoGrid

serverID[1..1]:int(4) {pk}
name[1..1]:varchar(255)
oid:varchar(255)
description:varchar(255)
dataType[1..1]:int(4)
multiValued[1..1]:bit
searchble[1..1]:bit
guid[1..1]:char(39)
syntax[1..1]:int(4)
displayName:varchar(255)
constraints:varchar(255)
acl:image

namespacePartitionID[1..1]:int(4)
valuePartitionID[1..1]:int(4)
dsoType[1..1]:int(4)
datasource[1..1]:varchar(255)
database[1..1]:varchar(255)
login:varchar(255)
password:varchar(255)
maxCnx:int(4)
timeout:int(4)
replicationType:int(4)

 2011 Michael R. Blaha Patterns of Data Modeling 31

LDAP Reverse Engineering: Observations

• The schema has a strong and uniform style.

– Primary key fields are IDs, replicationKey, and sequence.

– All primary key fields are int(4).

• Antipattern: Parallel attributes.

– ObjectAttributes has parallel attributes: vcVal, iVal, vbVal, imgVal,
and dtVal. Apparently, each record fills in the one field with the
appropriate data type.

– The usage is very limited and seems OK here.

• Antipattern: Disguised (overloaded) fields.

– ObjectAttributes.iVal is used to store both integers and IDs
(essentially pointers to objects). I determined this by inspecting data.

– Thus the LDAP standard subverts referential integrity. This is largely
a consequence of LDAP’s heritage of being designed for files.

 2011 Michael R. Blaha Patterns of Data Modeling 32

LDAP Reverse Engineering: Observations (cont.)

• Antipattern: Modeling error,

– There can be many ClassContainers for the same contained Classes
and container Classes.

– This lets a class contain multiple copies of a class.

– Apparently, the multiple copies do not have different roles. This is
odd. There is no way to distinguish the multiple copies.

• Antipattern: Paradigm degradation.

– The LDAP standard forces data into a hierarchical structure. A
hierarchy is adequate for simple data. It distorts a complex data
structure (unlike the neutral structure of relational databases).

– LDAP degrades use of a relational database. It foregoes referential
integrity and uses pointers that programming code must handle.

 2011 Michael R. Blaha Patterns of Data Modeling 33

Section 8: Pattern Literature

Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA: Building Better
Software with Archetype Patterns and UML. Boston: Addison-Wesley,
2004.

• Their archetype models are large and more like seed models.

– Small archetype models are more likely to be application
independent and reusable.

• They distinguish between client and supplier. This is a modeling error.
This is completely unnecessary, given that they have roles.

• The book focuses on design and programming.

• Data modeling notation: UML class model.

*1
Party PartyRole PartyRoleType

* 1

PartyRelationship

1 1

* *

supplierclient

from page 159

 2011 Michael R. Blaha Patterns of Data Modeling 34

Pattern Literature (continued)

Martin Fowler. Analysis Patterns: Reusable Object Models. Boston,
Massachusetts: Addison-Wesley, 1997.

• Fowler discusses different application domains and gradually
elaborates the seed models, explaining important abstractions along
the way.

– Most of his examples are from health care, finance, accounting, and
the stock market.

• Data modeling notation: IE-like notation with object-oriented jargon.

• This is an excellent book.

 2011 Michael R. Blaha Patterns of Data Modeling 35

Pattern Literature (continued)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Reading,
Massachusetts: Addison-Wesley, 1995.

• Focuses on issues of programming design.

– They don’t cover databases.

• Discusses abstract patterns that transcend individual programs.

– This stands in contrast to most of the database pattern books.

• Data modeling notation: OMT class model notation (a precursor to the
UML).

• This is a seminal work.

 2011 Michael R. Blaha Patterns of Data Modeling 36

Pattern Literature (continued)

David C. Hay. Data Model Patterns: Conventions of Thought. New York,
New York: Dorset House, 1996.

• Presents seed models for a wide variety of applications areas.

– Person and Organization

– Product

– Procedure

– Contract

– Laboratory

– Material planning

– Process manufacturing

– Document

• Data modeling notation: Richard Barker et al’s (Oracle notation).

• This is an excellent book. (Hays has just come out with a new book.)

 2011 Michael R. Blaha Patterns of Data Modeling 37

Pattern Literature (continued)

Len Silverston. The Data Model Resource Book, Volume 1. New York,
New York: Wiley, 2001.

Len Silverston. The Data Model Resource Book, Volume 2. New York,
New York: Wiley, 2001.

• Vol 1 presents seed models for a wide variety of applications areas.

– Person and Organization

– Product, Order, Shipment

– Work effort

– Invoice, Accounting, Budgeting

– Human Resources

• Vol 2 presents seed models for a variety of industries.

• Data modeling notation: Richard Barker et al’s (Oracle notation).

 2011 Michael R. Blaha Patterns of Data Modeling 38

Pattern Literature (continued)

Len Silverston and Paul Agnew. The Data Model Resource Book, Volume
3. New York, New York: Wiley, 2009.

• Chapters 2 and 3 have an excellent discussion of party (comparable to
actor in this book). They distinguish between a declarative role (a role
that a person or organization plays within an entire enterprise) and a
contextual role (a role in a specific relationship).

• Volume 3 is an excellent book. The scope is limited, but the book is
abstract and incisive.

• Data modeling notation: Richard Barker et al’s (Oracle notation).

– Uses this notation for consistency with earlier books, even though the
notation is dated.

