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Section 1: Introduction

Pattern Definitions From the Literature

• [Alexander-1979]. A solution to a problem in context.

• [Buschmann-1996]. Describes a particular recurring design problem 
that arises in specific design contexts, and presents a well-proven 
generic scheme for its solution.

• [Erl-2009] A proven solution to a common problem individually 
documented in a consistent format and usually as part of a larger 
collection.

• [Fowler-1997]. An idea that has been useful in one practical context 
and will probably be useful in others.

• [Gamma-1995] Explains a general design that addresses a recurring 
design problem. Describes the problem, the solution, when to apply the 
solution, and its consequences.

• [Blaha-2010] A model fragment that is profound and recurring.
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Why are Patterns Important?

• Enriched modeling language. Patterns provide a higher level of 
building blocks than modeling primitives. Patterns are prototypical 
modeling fragments that distill the knowledge of experts.

• Improved documentation. Patterns offer standard forms that improve 
modeling uniformity.

• Reduced modeling difficulty. Many developers find modeling difficult 
because of the intrinsic abstraction. Patterns are all about abstraction 
and give developers a better place to start.

• Faster modeling. Developers do not have to create everything from 
scratch and can build on the accomplishments of others.

• Better models. Patterns reduce mistakes and rework. Carefully 
considered patterns are more likely to be correct and robust than an 
untested, custom solution.
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Drawbacks of Patterns

• Sporadic coverage. You cannot build a model by just combining 
patterns. Typically you will use only a few patterns, but they often 
embody key insights.

• Pattern discovery. It can be difficult to find a pattern, especially if your 
idea is ill-formed.

• Complexity. Patterns are an advanced topic and can be difficult to 
understand.

• Inconsistencies. There has been a real effort in the literature to cross 
reference other work and build on it. However, inconsistencies still 
happen.

• Immature technology. The patterns literature is active but the field is 
still evolving.
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Pattern vs. Seed Model

Most of the database literature confuses patterns with seed models.

• Seed model: a model that is specific to a problem domain.

– Provides a starting point for applications from its problem domain.

Pattern Seed model

Applicability Application independent Application dependent

Scope An excerpt of a model Intended to be the starting 
point for an application

Model size Typically <10 classes Typically 10-50 classes

Abstraction More abstract Less abstract

Model type Can be described with a data 
model

Can be described with a data 
model
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Section 2: Aspects of Pattern Technology

• Mathematical template: an abstract model fragment that is devoid of 
application content.

– Driven by deep data structures that often arise in database models.

– Notation: Angle brackets denote parameters that are placeholders.

• Antipattern: a characterization of a common software flaw.

– Shows what not to do and how to fix it

• Archetype: a deep concept that is prominent and cuts across problem 
domains.

• Identity: the means for denoting individual objects, so that they can be 
found.

• Canonical model: a submodel that provides a useful service for many 
applications

The remaining lecture will focus on the first two topics.
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Section 3: Mathematical Template — Tree

• Tree: a term from graph theory.

– A tree is a set of nodes that connect from child to parent. Each node 
has one parent node except for the node at the tree’s top.

– A node can have many (zero or more) child nodes.

– There are no cycles — at most one path connects any two nodes. 

• An example of a tree...

A

B C D

E F
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Six Tree Templates

• Hardcoded tree. Hardcodes types, one for each level of the tree.

• Simple tree. Restricts nodes to a single tree. Treats nodes the same.

• Structured tree. Restricts nodes to a single tree. Differentiates leaf 
nodes from branch nodes.

• Overlapping trees. Permits a node to belong to multiple trees. Treats 
nodes the same.

• Tree changing over time. Stores multiple variants of a tree. A 
particular tree can be extracted by specifying a time. Restricts nodes to 
a single tree. Treats nodes the same.

• Degenerate node and edge. Groups a parent with its children. The 
grouping itself can be described with attributes and relationships. 
Restricts nodes to a single tree. Treats nodes the same.
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Hardcoded Tree

• Use when:

– The structure of a tree is well known and it is important to enforce the 
sequence of types in the levels of the hierarchy.

– In practice, used for examples, but seldom for code.

Hardcoded tree template Example: Organizational chart

<Level 1 class>

<Tree>

root

0..1
1

<Level 2 class>

1

*

<Level 3 class>

1

*

. . .

Corporation

Division

1

*

Department

1

*
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Simple Tree

• Use when:

– Tree decomposition is merely a matter of data structure.

• Node names can be globally unique or unique within the context of a 
parent.

<Tree>
root

<Node>

parent child

Simple tree template

{All nodes have a parent except the root node.}
{There cannot be any cycles.}

Person

manager subordinate

{Every person has a manager, except the CEO.}

Example: Management hierarchy

0..1 1
0..1 * 0..1 *

{The management hierarchy must be acyclic.}
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Structured Tree

• Use when:

– Branch nodes and leaf nodes have different attributes, relationships, 
and/or behavior.

• Node names can be globally unique or unique within the context of a 
parent.

<Branch>

<Node>

<Leaf>

<Tree>
child

parent

Structured tree template
root

{All nodes have a parent except the root node.}
{There cannot be any cycles.}

Group

DrawingObject

GeometricObject

{The group hierarchy must be acyclic.}

Example: Graphical editor

0..1 1

0..1

*

0..1

2..*

Text
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Overlapping Trees

• Use when:

– A node can belong to multiple trees.

– Example: A part can have several bill-of-materials, such as one for 
manufacturing, another for engineering, and another for service.

• Motivated by [Fowler, page 21] but a more powerful template capturing 
the constraint that a child has at most one parent for a tree.

<Tree>
root

<Node>

Overlapping trees template

{All nodes have a parent except the root node.}
{There cannot be any cycles.}

{Each BOM must be acyclic.}

Example: Mechanical parts

{A parent must only have children for trees to

1

* *
child parent0..1

*

* BOM
root

PartRole1

* *
child parent0..1

*

*

which the parent belongs.}

Part
1*
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Tree Changing Over Time

• Note that the data structure does not enforce that a Node has at most 
one parent at any time. Application code would need to enforce this 
constraint.

Tree changing over time template

root

{All nodes have a parent except the root node. There cannot be any cycles.}

0..1 1

<Node>

effectiveDate
expirationDate

<Binding>

effectiveDate
expirationDate

* *1 1<Tree>
<Object>

effectiveDate
expirationDate

{A child has at most one parent at a time.}

<NodeLink>

effectiveDate
expirationDate

**
11parent child
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Tree Changing Over Time (continued)

• Use when:

– The history of a tree must be recorded.

Example: management hierarchy

effectiveDate
expirationDate

MgmtHierarchy

PositionLink

effectiveDate
expirationDate

Position

title effectiveDate
expirationDate

Assignment

effectiveDate

*1 1*0..1

Organization

Person

**
11parent child

expirationDate

1

*
1

root



 2011 Michael R. Blaha Patterns of Data Modeling 15

Degenerate Node and Edge

• Use when:

– The grouping of a parent and its children must be described.

Degenerate node and edge template

Example: Single inheritance

child

parent

*
0..110..1 1
0..1<Tree> <Node>

root
<Object>

{There cannot be any cycles.}

Attribute

name

Generalization

isExhaustive
subtype

supertype

*
10..10..1

discriminator
Class

name
0..1
0..1

{There cannot be any cycles.}

 2011 Michael R. Blaha Patterns of Data Modeling 16

Section 4: Mathematical Template — Additional Templates

Additional Templates

There are templates for additional data structures...

• Directed graph.

• Undirected graph.

• Item description.

• Star schema.

I welcome suggestions for other important data structures that can
be characterized with templates.
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Section 5: Mathematical Template — Example

Here are alternative patterns for expressing the data structure of a
corporate management hierarchy.

Management Template — Simple Tree

Management Template — Structured Tree

Person

manager subordinate
{Every person has a manager, except the CEO.}

0..1 * {The management hierarchy must be acyclic.}

IndividualContributorManager

Person

name
title

0..1

*

Department

name 1*

{Every person has a manager, except the CEO.}
{The management hierarchy must be acyclic.}
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Mgmt Template — Tree Changing Over Time

The model provides matrix management. This is because the model does
not enforce a tree—that a child can only have a single parent at a time.

Application code would need to provide such a constraint if it was desired.

effectiveDate
expirationDate

MgmtHierarchy

PositionLink

effectiveDate
expirationDate

Position

title effectiveDate
expirationDate

Assignment

effectiveDate

*1 1*0..1

Organization

Person

**
11parent child

expirationDate

1

*
1

root
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Management Template — Simple Directed Graph

Mgmt Template — Structured Directed Graph

Person

manager subordinate

{Every person has a manager, except the CEO.}

*

{The management graph must be acyclic.}

*

IndividualContributorManager

Person

name
title*

Department

name 1*

{Every person has a manager, except the CEO.}
{The management graph must be acyclic.}

*
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Mgmt Template — Simple DG Changing Over Time

effectiveDate
expirationDate

MgmtHierarchy

PositionLink

effectiveDate
expirationDate

Position

title effectiveDate
expirationDate

Assignment

effectiveDate

*1 1*0..1

Organization

Person

**
11parent child

expirationDate

1

*
1

root
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Section 6: Antipatterns

• Antipattern: a characterization of a software flaw. When you find an 
antipattern, substitute the correction.

– Universal antipattern — avoid for all applications.

– Non-data-warehouse antipattern — acceptable for data 
warehouses, but avoid them otherwise.

• Patterns are good ideas that can be reused.
In contrast, antipatterns look at what can go wrong.

• The literature focuses on antipatterns for programming code, but 
antipatterns also apply to data models.

• [Brown-98]. An antipattern is some repeated practice that initially 
appears to be beneficial, but ultimately produces more bad 
consequences than beneficial results.
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Universal Antipattern: Symmetric Relationship

• Observation: There is a self relationship with the same multiplicity and 
role names on each end. 

– Symmetric relationships are always troublesome for relational 
databases.

♦ Which column is first? Which column is second?

♦ Double entry or double searching of data.

• Improved model: Promote the relationship to a class in its own right. 
The improved model is often more expressive.

Contract

Antipattern example

RelatedContract

* *
Contract

Improved model

*

ContractRelationship

0..1
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Universal Antipattern: Artificial Hardcoded Levels

• Observation: There is a fixed hierarchy with little difference between 
the levels.

– Contrast with the hardcoded tree template where there is a material 
difference between the levels.

• Improved model: Abstract and consolidate the levels. Use one of the 
tree patterns to relate the levels.

Antipattern example Improved model

Supervisor

Manager
1

*

IndividualContributor

1

*

*
0..1
boss

subordinate

Employee

employeeType
/ reportingLevel
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Non-DW Antipattern: Parallel Attributes

• Observation: A class has groups of similar attributes. Such a model 
can be brittle, verbose, and awkward to extend.

• Exceptions: OK for data warehouses.

• Improved model: Abstract and factor out commonality.

– The improved model can handle new products and financial metrics.

*

Organization

name

FinancialData

Metric

name

Product

name

*

*

1

1

Antipattern example Improved model

lawnmowerSales
lawnmowerProfit
tractorSales
tractorProfit
snowblowerSales
snowblowerProfit

name

Organization

quantity
1
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Non-DW Antipattern: Combined Classes

• Observation: A class has disparate attributes and lacks cohesion.

– The contact position and contact phone depend on the contact name 
which in turn depends on the customer.

– Several customer records could have the same contact name with 
inconsistent positions and phones.

• Exceptions: OK for data warehouses.

• Improved model: Make each concept its own class.

Antipattern example Improved model

Person

name
position
phone

Customer

customerName
customerType
customerStatus

0..1
contact

*
accountNumber

Customer

customerName
customerType
customerStatus

accountNumber

contactName
contactPosition
contactPhone
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Section 7: Antipattern Example

Reverse Engineering the LDAP Standard

• LDAP = Lightweight Directory Access Protocol

– LDAP is a public standard that has two primary purposes:
user authentication and sharing basic data across applications.

– LDAP was originally implemented with files, but we will study a 
product with a database implementation.

– The LDAP schema is by intent a meta-schema that stores both a 
model and the model’s data.

• My motive was to reverse engineer the database so that my client could 
better understand the product.

• Available inputs.

– Schema: tables, attributes, data types, nullability, and primary keys.

– Data.

– A book explaining LDAP concepts.
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LDAP Reverse Engineering: Original Schema

I was given a printout of a SQL server schema.

There were a total of 11 tables. DsTimestamp is one of the tables.

DsTimestamp

Column Name Datatype Length Precision Scale

i_Replication_Key

dt_SchemaTimestamp

dt_DitTimestamp

dt_ReplicationTimestamp

dt_GroupTimestamp

int

datetime

datetime

datetime

datetime

4

8

8

8

8

10

0

0

0

0

0

0

0

0

0

Allow Nulls Identity
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LDAP Reverse Engineering: Original Schema

First, I typed the schema into a modeling tool (three slides).

Attributes have a name, nullability, datatype, and primary key flag.

Configuration

replicationKey[1..1]:int(4) {pk}
id[1..1]:int(4)
containerPartitionID:int(4)
containerDbID:int(4)
peKey:varchar(255)

AttributeContainers

replicationKey[1..1]:int(4) {pk}
aid[1..1]:int(4)
containerClsID[1..1]:int(4)
required[1..1]:bit

ObjectAttributes

dsID[1..1]:int(4) {pk}
sequence[1..1]:int(4) {pk}
aid[1..1]:int(4) {pk}
vcVal:varchar(255)
iVal:int(4)
vbVal:varbinary(255)
imgVal:image
dtVal:datetime
expiresTime:datetime

DsTimestamp

replicationKey[1..1]:int(4) {pk}
schemaTimestamp:datetime
ditTimestamp:datetime
replicationTimestamp:datetime
groupTimestamp:datetime

ObjectLookup

dsID[1..1]:int(4) {pk}
entryName[1..1]:varchar(255)
objectClass[1..1]:int(4)
containerDsID:int(4)
dseType[1..1]:int(4)
creatorsName:varchar(255)
createTimestamp:datetime
modifiersName:varchar(255)
modifyTimestamp:datetime
acl:image
expiresTime:datetime
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LDAP Rev Engr: Original Schema (continued)

ClassContainers

replicationKey[1..1]:int(4) {pk}
clsID[1..1]:int(4)
containerClsID[1..1]:int(4)

DsConfiguration

serverID[1..1]:int(4) {pk}
instanceID[1..1]:int(4)
serverName[1..1]:varchar(255)
dynamicDbFlags[1..1]:int(4)
replicationFlags[1..1]:int(4)
replicationProto[1..1]:varchar(255)
replicationEndP[1..1]:varchar(255)
replicationQSize[1..1]:int(4)
replicationLagTime[1..1]:int(4)
replicationBuffSize[1..1]:int(4)
replicationSyncTime[1..1]:int(4)
replicationInfo[1..1]:varchar(255)

Classes

clsID[1..1]:int(4) {pk}
name[1..1]:varchar(255)
oid:varchar(255)
description:varchar(255)
rdnAid[1..1]:int(4)
guid[..1]:char(39)
dseDitType[1..1]:int(4)
displayName:varchar(255)
isSecurityPrincipal[1..1]:bit
containerType[1..1]:int(4)
defaultSecurityDecriptor:image
acl:image

Subrefs

namespacePartitionID[1..1]:int(4) {pk}
subrefEntry:varchar(255)
subrefPrentID:int(4)
valuePartitionCount[1..1]:int(4)
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LDAP Rev Engr: Original Schema (continued)

Attributes

aid[1..1]:int(4) {pk}

DsoGrid

serverID[1..1]:int(4) {pk}
name[1..1]:varchar(255)
oid:varchar(255)
description:varchar(255)
dataType[1..1]:int(4)
multiValued[1..1]:bit
searchble[1..1]:bit
guid[1..1]:char(39)
syntax[1..1]:int(4)
displayName:varchar(255)
constraints:varchar(255)
acl:image

namespacePartitionID[1..1]:int(4)
valuePartitionID[1..1]:int(4)
dsoType[1..1]:int(4)
datasource[1..1]:varchar(255)
database[1..1]:varchar(255)
login:varchar(255)
password:varchar(255)
maxCnx:int(4)
timeout:int(4)
replicationType:int(4)
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LDAP Reverse Engineering: Observations

• The schema has a strong and uniform style.

– Primary key fields are IDs, replicationKey, and sequence.

– All primary key fields are int(4).

• Antipattern: Parallel attributes.

– ObjectAttributes has parallel attributes: vcVal, iVal, vbVal, imgVal, 
and dtVal. Apparently, each record fills in the one field with the 
appropriate data type.

– The usage is very limited and seems OK here.

• Antipattern: Disguised (overloaded) fields.

– ObjectAttributes.iVal is used to store both integers and IDs 
(essentially pointers to objects). I determined this by inspecting data.

– Thus the LDAP standard subverts referential integrity. This is largely 
a consequence of LDAP’s heritage of being designed for files.
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LDAP Reverse Engineering: Observations (cont.)

• Antipattern: Modeling error,

– There can be many ClassContainers for the same contained Classes 
and container Classes.

– This lets a class contain multiple copies of a class.

– Apparently, the multiple copies do not have different roles. This is 
odd. There is no way to distinguish the multiple copies.

• Antipattern: Paradigm degradation.

– The LDAP standard forces data into a hierarchical structure. A 
hierarchy is adequate for simple data. It distorts a complex data 
structure (unlike the neutral structure of relational databases).

– LDAP degrades use of a relational database. It foregoes referential 
integrity and uses pointers that programming code must handle.
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Section 8: Pattern Literature

Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA: Building Better
Software with Archetype Patterns and UML. Boston: Addison-Wesley,
2004.

• Their archetype models are large and more like seed models.

– Small archetype models are more likely to be application 
independent and reusable.

• They distinguish between client and supplier. This is a modeling error. 
This is completely unnecessary, given that they have roles.

• The book focuses on design and programming.

• Data modeling notation: UML class model.

*1
Party PartyRole PartyRoleType

* 1

PartyRelationship

1 1

* *

supplierclient

from page 159
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Pattern Literature (continued)

Martin Fowler. Analysis Patterns: Reusable Object Models. Boston,
Massachusetts: Addison-Wesley, 1997.

• Fowler discusses different application domains and gradually 
elaborates the seed models, explaining important abstractions along 
the way.

– Most of his examples are from health care, finance, accounting, and 
the stock market.

• Data modeling notation: IE-like notation with object-oriented jargon.

• This is an excellent book.
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Pattern Literature (continued)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Reading,
Massachusetts: Addison-Wesley, 1995.

• Focuses on issues of programming design.

– They don’t cover databases.

• Discusses abstract patterns that transcend individual programs.

– This stands in contrast to most of the database pattern books.

• Data modeling notation: OMT class model notation (a precursor to the 
UML).

• This is a seminal work.
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Pattern Literature (continued)

David C. Hay. Data Model Patterns: Conventions of Thought. New York,
New York: Dorset House, 1996.

• Presents seed models for a wide variety of applications areas.

– Person and Organization

– Product

– Procedure

– Contract

– Laboratory

– Material planning

– Process manufacturing

– Document

• Data modeling notation: Richard Barker et al’s (Oracle notation).

• This is an excellent book. (Hays has just come out with a new book.)
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Pattern Literature (continued)

Len Silverston. The Data Model Resource Book, Volume 1. New York,
New York: Wiley, 2001.

Len Silverston. The Data Model Resource Book, Volume 2. New York,
New York: Wiley, 2001.

• Vol 1 presents seed models for a wide variety of applications areas.

– Person and Organization

– Product, Order, Shipment

– Work effort

– Invoice, Accounting, Budgeting

– Human Resources

• Vol 2 presents seed models for a variety of industries.

• Data modeling notation: Richard Barker et al’s (Oracle notation).
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Pattern Literature (continued)

Len Silverston and Paul Agnew. The Data Model Resource Book, Volume
3. New York, New York: Wiley, 2009.

• Chapters 2 and 3 have an excellent discussion of party (comparable to 
actor in this book). They distinguish between a declarative role (a role 
that a person or organization plays within an entire enterprise) and a 
contextual role (a role in a specific relationship).

• Volume 3 is an excellent book. The scope is limited, but the book is 
abstract and incisive.

• Data modeling notation: Richard Barker et al’s (Oracle notation).

– Uses this notation for consistency with earlier books, even though the 
notation is dated.


